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Introduction

The developmental origins hypothesis states that adverse envi-
ronmental conditions during specific time windows of mamma-
lian development can have a lasting effect on metabolic pathways 
and physiology influencing chronic disease susceptibility.1 IUGR 
is considered to be the result of a poor intrauterine environment 
and has been associated with diverse adverse health outcomes 
later in life, including Type 2 diabetes and hypertension.2-5 More 
than 5% of all pregnancies in the western world result in infants 
being born SGA,6 an often-used proxy for IUGR.7

In animal models IUGR is modeled by inducing placental 
insufficiency by artificially reducing placental perfusion or by 
limiting the maternal nutrients supply with protein or caloric 
restriction.8 In humans, SGA is associated with both placental 
insufficiency and suboptimal prenatal nutrition. For instance, 
preeclampsia, which changes placental perfusion,9 is one of the 
major risk factors for SGA10 and the risk to develop preeclampsia 
is reduced by early gestational micronutrient supplementation.11 
Furthermore, micronutrient supplementation during pregnancy 
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has been found to increase birth weight and the risk for severe 
SGA is decreased by iron-folic acid intake alone.12,13

The induction of persistent epigenetic change by prenatal 
environmental conditions may be a mechanism contributing to 
the associations between early development and later life health 
in humans. For example, extensive work in animals has shown 
that placental insufficiency or restriction of the maternal diet of 
protein, folic acid or other micronutrients can persistently alter 
DNA methylation and other epigenetic marks and may con-
tribute to the development of diabetes and hypertension.14-19  
In humans, periconceptional exposure (e.g., around conception 
and the first trimester) to the Dutch famine, a famine at the end 
of WWII, is associated with persistent differences in DNA meth-
ylation of various important loci involved in growth and metabo-
lism, including IGF2, GNASAS, INSIGF and LEP.20,21 Further 
work indicated that IGF2 methylation is also sensitive to mater-
nal periconceptional folic acid use.22

These loci are also relevant in relation to prenatal growth 
restriction. IGF2 is a major driver of embryonic growth23 and in 
concordance with this role genetic variation on the paternal allele 
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preterm but with a birth weight appropriate for their gestational 
age (AGA) were compared. The SGA individuals were not only 
small in terms of birth weight, the selection criterion, but also 
smaller in terms of birth length and head circumference at 
birth (Table 1), compatible with IUGR.30 The SGA individu-
als remained relatively short (-1.02 SDS), while the AGA group 
was similar in adult height to the Dutch reference values (-0.17 
SDS). The greatest differences in the obstetric data for an SGA 
child as compared to an AGA child were a higher prevalence of 
preeclampsia (65.8 vs. 10.7%) and a lower occurrence of cho-
rioamnionitis, an intrauterine infection followed by a prolonged 
rupture of the membrane and preterm labor (5.3 vs. 25.3%). In 
addition, smoking during pregnancy was less common in the 
pregnancies leading to a SGA child (28.9 vs. 35.7%).

Comparison between SGA and AGA. We measured gene spe-
cific methylation for IGF2, GNASAS, INSIGF and LEP in whole 
blood. The average DNA methylation levels were 48.5, 47.5, 79.4 
and 25.7% for IGF2, GNASAS, INSIGF and LEP, respectively 
(Table 2). DNA methylation levels in the SGA group were not 
significantly different from the AGA group. The results were 
similar for the individual CpG dinucleotides (Sup. Table 1). The 
variance in DNA methylation was also not significantly different 
between the two groups (Levene’s test p > 0.14). We repeated 
the analyses using other frequently used cut-offs for birth weight 
SDS scores to define growth restriction. Using a cut-off of 
≤1.3 SDS (the tenth percentile, N = 34 vs. N = 75)or ≤2SDS  
(frequently used by pediatric endocrinologists, N = 13 vs. N = 75) 

of the IGF2-INS region was found to influence the risk of being 
born SGA.24 GNAS and LEP have both been found to be differ-
entially expressed between placentas of IUGR and normal chil-
dren.25 Both the GNAS region and leptin are similarly involved in 
early growth and glucose metabolism as the IGF2-INS region.26,27

SGA and prenatal famine exposure are associated with simi-
lar later life phenotypic consequences,3,28 but it is unclear to 
what extent this is due to the same mechanism. Here we inves-
tigated whether growth restriction during early and/or mid-
gestation (<32 weeks) is associated with differences in DNA 
methylation at these four loci that we found to be sensitive to 
environmental conditions early in development. We selected 
individuals from the Dutch nationwide Project On Preterm and 
Small-for-gestational age infants (POPS) cohort29 and measured 
DNA methylation of the IGF2 differentially methylated region 
(DMR) and INSIGF, GNASAS and LEP promoters. We com-
pared levels of DNA methylation between preterm born SGA 
individuals with individuals born preterm but with a birth 
weight appropriate for their gestational age and with a normal 
postnatal growth. In addition, we explored possible associations 
with major risk factors for SGA, including preeclampsia and pre-
natal smoking.

Results

Child, pregnancy and maternal characteristics. In this study,  
38 individuals born preterm and SGA and 75 individuals born 

Table 1. Characteristics at birth and pregnancy

Characteristics SGA AGA p value1

Number of individuals N 38 75

Male % 39.5 44.0 0.65

Adult height SDS2
 (SD) -1.02 (0.99) -0.17 (0.97) 3.3 x 10-5

At Birth

Gestational age at birth weeks (SD) 30.6 (1.1) 30.1 (1.5) 0.053

Birth weight SDS3 (SD) -1.86 (0.50) 0.31 (0.73) 1.1 x 10-31

Birth head circumference SDS (SD) -1.34 (0.79) 0.20 (0.92) 4.1 x 10-13

Birth length SDS (SD) -1.83 (0.87) 0.19 (1.12) 3.3 x 10-13

Obstetric data

First child (parity) % 68% 52% 0.097

Maternal age years (SD) 27.8 (4.8) 27.9 (5.9) 0.92

Problematic obstetric history4 % 18.4 17.3 0.89

Socio-economic status5 SES 3.53 (1.50) 3.59 (1.55) 0.82

Maternal height cm (SD) 165.6 (5.4) 167.3 (6.1) 0.14

Maternal diabetes mellitus % 5.3 4.0 0.57

Chorioamnionitis6 % 5.3 25.3 0.009

Smoking during pregnancy % 28.9 35.7 0.029

Pre-existing hypertension % 10.7 2.7 0.08

Preeclampsia % 65.8 10.7 3.4x10-11

1p value resulting from an unpaired t-test between the SGA and AGA groups. 2Standard deviation score from the reference population mean. 3The 
birth weight in grams (SD) for the SGA and AGA groups were 963(149) and 1508(301) respectively. 4Percentage of mothers with previous pregnancies 
and/or births with complications. 5Socio-economic status of the family given on a 1–6 scale, with 1 being the poorest score and 6 being the highest 
score. 6Intrauterine infection followed by a prolonged rupture of the membrane and preterm labor.
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diabetes38 and genetic variation in the glucocorticoid receptor 
was found to influence both growth and later glucose homeosta-
sis in children born preterm and SGA.39

The current study focuses on the influence of conditions 
during early and mid-gestation to account for the observation 
that DNA methylation at these loci may be less sensitive during 
late gestation.20-22 One may consider the possibility that all very  
preterm-born children irrespective of prenatal growth experi-
enced an adverse development. In that case, DNA methylation 
changes may have occurred in both groups studied. However, 
chorioamnionitis, which is a generally more acute complication of 
pregnancy, was more prevalent among children born AGA and is 
not associated with DNA methylation at these loci. Furthermore, 
the height of AGA individuals at 19 years was not different from 
the Dutch reference values indicating that prenatal birth per se 
did not compromise postnatal growth. This supports the inter-
pretation that there are persistent phenotypic differences between 
SGA and AGA individuals born very preterm, which were not 
explained by differences in DNA methylation at the measured 
loci. Also, the association between birth weight and cardiovas-
cular disease was found to be independent of gestational length, 
suggesting a link with prenatal growth and not preterm birth for 
fetal programming.3 A comparison of very preterm children with 
children at term may not be sufficient to solve this issue because 
of the possible influence of the intensive neonatal treatments on 
epigenetic marks.

Our results, together with findings by others,31,32,36 suggest 
that SGA is not associated with similar epigenetic changes as pre-
natal famine exposure in western populations. If so, the etiology 
of the similar later life consequences associated with these early 
life conditions, diabetes and cardiovascular disease, may be dif-
ferent. More detailed studies of the epigenetic changes associated 
with human and animal growth restriction are warranted to gain 
insight into the link between development and disease. Animal 
models will be important to elucidate the basic principles, but care 
may have to be taken when extrapolating epigenetic studies to 
humans, since it may be possible that animal models implement-
ing nutritional restrictions early in gestation may better simulate 
human famine exposure than IUGR. Studies in humans will 
require extensive and detailed phenotyping of prenatal growth, 
maternal and environmental factors and genetic variation. Most 
likely such studies will require a relatively large initial study size 
in which homogeneous subselections can be made to overcome 

and stratifying all performed analyses by sex did not change the 
outcome (data not shown).

Preeclampsia and other risk factors. The risk to develop pre-
eclampsia is influenced by nutrition in the same period of ges-
tation11 as our previous studies.20-22 To reduce the influence of 
heterogeneity, we first restricted our analysis to the individuals 
born SGA after a pregnancy with preeclampsia with those born 
AGA and without (25 vs. 67). No significant differences were 
found for these loci (data not shown).

Next we tested for an association in all measured individu-
als between DNA methylation and the factors with the great-
est difference between the SGA and AGA groups. Preeclampsia 
and maternal smoking during pregnancy were not associated 
with DNA methylation at these loci (Table 3). A nominally sig-
nificant association was observed for LEP and chorioamnionitis  
(p = 0.033), which would no longer be significant after account-
ing for the number of tests performed. Factors reported to be 
associated with increased risk of developing a SGA child, but 
not found in the current study, namely gestational age, a first 
pregnancy and maternal hypertension before pregnancy, were not 
associated with DNA methylation.

Discussion

We tested for the association of being born SGA before 32 weeks 
of gestation with DNA methylation of IGF2, GNASAS, INSIGF 
and LEP genes for which we previously showed an association 
with prenatal famine exposure and, for IGF2, folic acid supple-
mentation.20-22 We did not observe differences in DNA methyla-
tion at these genes between individuals who were born preterm 
and growth-restricted and individuals born preterm but with a 
weight appropriate for their gestational age and a normal postnatal  
growth. Preeclampsia was also not associated with DNA meth-
ylation levels.

The loci tested for DNA methylation differences may be 
regarded as markers for prenatal nutritional conditions. Our 
results are compatible with the interpretation that SGA and pre-
eclampsia do not have a nutritional component in our western and 
thus well-nourished cohort. Other studies on individuals born 
SGA at term also did not find an association with DNA meth-
ylation around the IGF2 locus.31,32 Our data does not exclude 
the possibility that a similar study in developing countries would 
yield different results for the loci studied, as malnutrition can be 
expected to play a more prominent role in those countries.33

In western cohorts SGA may more readily be associated with 
placental insufficiency and an insufficient transfer of oxygen to 
the child, which is known to contribute to growth restriction and 
prenatal programming34 and shown to influence DNA methyla-
tion patterns in animal models.35 Indeed, epigenetic differences 
may still be present in humans born SGA, but at other loci than 
those influenced by prenatal famine, as is suggested by work 
by Einstein et al.36 Beside maternal and environmental factors, 
however, genetic predisposition may play a role. Twin studies 
show that some of the associations between birth weight and 
later health are confounded by genetic factors.2,37 Indeed, genetic 
variation influencing birth weight also contributes to the risk of 

Table 2. Methylation difference between SGA and AGA

AGA (SD) SGA - AGA1 p value2

IGF2 48.5% (3.5) -0.2% 0.81

GNASAS 47.5% (4.6) -0.7% 0.41

INSIGF 79.4% (3.2) -0.2% 0.78

LEP 25.7% (5.3) -1.3% 0.24
1The difference in DNA methylation between the small for gestational 
age and appropriate for gestational age groups. A negative difference 
means that the SGA group has a lower methylation level. 2A two-sided 
p value resulting from a linear mixed model corrected for the correla-
tion between individual CpG dinucleotides, bisulfite batch and sex 
between the SGA and AGA groups.
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DNA methylation for individual CpG dinucleotides of IGF2, 
GNASAS, INSIGF and LEP was determined by a mass spectrom-
etry-based method (Epityper, Sequenom), for which the repro-
ducibility and accuracy has been shown extensively.20,44,45 Details 
of the measured amplicons, including details of functional 
relevance were published before.46 In short, IGF2 DMR hypo-
methylation was associated with biallelic IGF2 expression47 and 
INSIGF locus measured is the DMR located in the promoter of 
the imprinted INSIGF transcript which originates from the INS 
promoter.48 The GNASAS amplicon is part of the GNAS DMR2 
and is located at the proximal promoter of this imprinted RNA 
antisense transcript of GNAS,49 overlapping the binding site of 
several transcription factors according to ENCODE50 CHIP-
seq data. The LEP amplicon also covers the proximal promoter 
and includes several CpG sites of which the methylation status 
influences transcription.51 DNA methylation was measured in 
samples from 19 year old individuals, which were assumed to 
provide information on potential epigenetic differences induced 
during prenatal development. The stability of the methylation 
marks at the four loci investigated during the life course was 
suggested by their association with prenatal famine 60 decades 
post exposure.20,21 In addition, comparing blood samples taken 
10–20 years apart indicated the stability of the methylation of 
IGF2 DMR, LEP and, to a lesser extent, INSIGF (GNASAS was 
not studied).46 Data for the four loci was acquired and processed 
as previously described.20,21,46 The PCR and the subsequent steps 
were performed in triplicate and performed according to the 
manufacturers’ protocol. Each locus was measured on the same 
384-well plate for all 113 individuals studied. Data quality con-
trol and filtering consisted of the removal of triplicate measure-
ments for which less than two measurements were successful or 
for measurements with a standard deviation larger than 0.1. CpG 
dinucleotides of which the measurement could be confounded 
by single nucleotide polymorphisms and CpG dinucleotides 
of which the success rate after filtering was below 75% were 
removed. Details about the primers, success rates, the CpG sites  
included and biological relevance are provided in Supplemental 
Table 1.

Statistics. Unpaired t-tests were used for the analyses of the 
anthropometric and pregnancy characteristics. We applied lin-
ear mixed models on the raw data without imputation of miss-
ing values to calculate differences in DNA methylation for each 
locus between the SGA and AGA groups. All group analyses 
account for bisulfite plate, sex and the correlation between CpG 
dinucleotides. Person identifier was added as random effect and 

the complexity and variation inherent to clinical cohorts of pre-
natal growth restricted humans.

Materials and Methods

Study population. The Dutch Project on Preterm and Small for 
Gestational Age Infants (POPS) is a nation-wide prospective 
study, encompassing 94% of all live born infants born very pre-
term (<32 weeks) and/or with a very low birth weight (<1,500 g) 
in 1983. The recruitment, details of measurements, and physi-
cal and psychosocial outcomes have been reported previously in 
detail.29,40 The anthropometric data at birth has been transformed 
into standard deviation scores (SDS) based on the Swedish ref-
erences for very preterm infants.41 The Swedish references were 
chosen because the Dutch references lack data on birth length 
and head circumference, while being highly similar.42 All other 
anthropometric data has been transformed using the Dutch ref-
erence values.43 The study was approved by the medical ethics 
committees of all participating centers and written informed 
consent was obtained from all participants.

Selection for current study. From the POPS cohort we had 
413 individuals available who were born before <32 weeks of ges-
tation. We excluded non-white participants (excluding 53), twins 
(excluding 86), individuals treated with glucocorticoids (dexa-
or beclomethasone) during the prenatal and/or neonatal period 
(excluding 71) and individuals with chromosomal abnormali-
ties or inborn errors in metabolism (excluding two). We defined 
small for gestational age (SGA) as individuals born with a birth 
weight of <-1 SDS. As a control group we selected individuals 
with a birth weight >-1 SDS and a weight at 3 months of >-1 SDS 
(AGA). From the 201 remaining individuals 42 met our SGA and 
92 met our AGA definition. 4 SGA and 17 AGA had not enough 
genomic DNA available and were excluded. This resulted in a 
selection of 38 small for gestational age individuals and 75 indi-
viduals with a birth weight appropriate for their gestational age 
and a normal postnatal growth, which extended up to age 19 years  
(height -0.17 SDS).

DNA methylation measurements. Genomic DNA was iso-
lated from whole blood drawn at age 19 using the Qiagen mini 
kit. Half a microgram of genomic DNA was bisulfite-treated 
using the EZ 96-DNA methylation kit (Zymo Research) using 
the standard overnight bisulfite treatment protocol. The 113 
individuals were bisulfite-treated on two 96-well plates. SGA and 
AGA individuals were equally distributed on the plates. The dis-
tribution of men and women was also similar on the two plates. 

Table 3. The relation between DNA methylation and risk factors

IGF2 GNASAS INSIGF LEP

β1 p2 β p β p β p

Preeclampsia 0.8% 0.34 0.9% 0.29 0.0% 0.99 -0.2% 0.88

Chorioamnionitis 0.8% 0.36 0.8% 0.42 0.5% 0.52 2.8% 0.033

Smoking3 -1.5% 0.054 -0.9% 0.29 -0.4% 0.53 -1.9% 0.98
1The b from a linear mixed model corrected for the correlation between individual CpG dinucleotides, bisulfite batch and sex. The investigated vari-
able was entered as a fixed effect. 2A two-sided p value resulting from a linear mixed model corrected for the correlation between individual CpG 
dinucleotides, bisulfite batch and sex. 3Smoking during pregnancy by the mother.
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Dutch Kidney Foundation, Sophia Foundation for Medical 
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Verloove-Vanhorick, JA Vogelaar); Emma’s Children’s Hospital 
AMC, Amsterdam (JH Kok, A Ilsen, M van der Lans, WJC 
Boelen-van der loo, T Lundqvist, HSA Heymans); Univeristy 
Hospital Groningen, Beatrix Children’s Hospital, Groningen 
(EJ Duiverman, WB Geven, ML Duiverman, LI Geven, EJLE 
Vrijlandt); University Hospital Maastricht, Maastricht (ALM 
Mulder, A Gerver); University Medical Center St Radboud, 
Nijmegen (LAA Kollée, L Reijmers, R Sonnemans); Leiden 
University Medical Center, Leiden (HA Delemarre-van de Waal, 
JM Wit, FW Dekker, MJJ Finken); Erasmus MC—Sophia 
Children’s Hospital, University Medical Center Rotterdam (N 
Weisglas-Kuperus, MG Keijzer-Veen, AJ van der Heijden, JB van 
Goudoever); VU University Medical Center, Amsterdam (MM 
van Weissenbruch, A Cranendonk, L de Groot, JF Samsom); 
Wilhelmina Children’s Hospital, UMC, Utrecht (LS de Vries, 
KJ Rademaker, E Moerman, M Voogsgeerd); Máxima Medical 
Center, Veldhoven (MJK de Kleine, P Andriessen, CCM 
Dielissen-van Helvoirt, I Mohamed); Isala Clinics, Zwolle (HLM 
van Straaten, W Baerts, GW Veneklaas Slots-Kloosterboer, EMJ 
Tuller-Pikkemaat); Royal Effatha Guyot Group, Zoetermeer 
(MH Ens-Dokkum); Association for Parents of Premature Babies 
(GJ van Steenbrugge).

Note

Supplementary materials can be found at:
www.landesbioscience.com/journals/epigenetics/article/13516

bisulfite batch, sex and group identifier (e.g., being SGA or AGA) 
were entered as fixed effects. The linear mixed model is preferred 
above more standard tests because it allows the incorporation 
of multiple individual CpG dinucleotides in one test, accounts 
for the correlation between adjacent CpG dinucleotides, incor-
porates the relevant adjustments within the model on the raw 
data, and uses available but incomplete data for individuals. All 
analyses were also performed using <-1.3 SDS (the tenth percen-
tile) and <-2 SDS birth weight as cut-offs to define SGA status. 
The analyses were also performed for individual CpG sites. The 
test for associations between birth characteristics or risk factors 
with DNA methylation was performed by adding the respective 
variable to the linear mixed model as a fixed effect. To test for dif-
ferences in the variance in DNA methylation between the groups 
we used the Levene test statistic for homogeneity of variance from 
the one-way ANOVA test in PASW 17.0. All analyses were per-
formed using PASW Statistics 17.0, previously known as SPSS. 
All p values reported are two-sided.
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